Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor.
نویسندگان
چکیده
PURPOSE OF REVIEW The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the receptor by the E3-ubiquitin ligase inducible degrader of the LDLR (IDOL). RECENT FINDINGS IDOL is a recently identified transcriptional target of the liver X receptors. Acting as an E3-ubiquitin ligase IDOL promotes ubiquitination of the LDLR, thereby marking it for lysosomal degradation. The determinants required for degradation of the LDLR by IDOL have been largely identified. IDOL also targets two related lipoprotein receptors, the very low-density lipoprotein receptor and apolipoprotein E receptor 2. Despite several similarities, the IDOL, and PCSK9 pathways for controlling LDLR abundance seem independent of each other. Genome-wide association studies have recently identified IDOL as a locus influencing variability in circulating levels of LDL, thereby highlighting the possible role of IDOL in human lipoprotein metabolism. SUMMARY Transcriptional induction of IDOL by liver X receptor defines a new post-transcriptional pathway for controlling LDLR abundance and LDL uptake independent of sterol regulatory element binding proteins. Targeting IDOL activity may offer a novel therapeutic approach complementary to statins for treating cardiovascular disease.
منابع مشابه
The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL.
RATIONALE The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation ...
متن کاملUbiquitin Ligases in Cholesterol Metabolism
To maintain cholesterol homeostasis, the processes of cholesterol metabolism are regulated at multiple levels including transcription, translation, and enzymatic activity. Recently, the regulation of protein stability of some key players in cholesterol metabolism has been characterized. More and more ubiquitin ligases have been identified including gp78, Hrd1, TRC8, TEB4, Fbw7, and inducible de...
متن کاملReciprocal regulation of very low density lipoprotein receptors (VLDLRs) in neurons by brain-derived neurotrophic factor (BDNF) and Reelin: involvement of the E3 ligase Mylip/Idol.
BDNF positively influences various aspects of neuronal migration, maturation, and survival in the developing brain. Reelin in turn mediates inhibitory signals to migrating neuroblasts, which is crucial for brain development. The interplay between BDNF and Reelin signaling in neurodevelopment is not fully understood. We show here that BDNF increased the levels of the Reelin receptor (VLDL recept...
متن کاملFERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors.
The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in t...
متن کاملTransgenic expression of dominant-active IDOL in liver causes diet-induced hypercholesterolemia and atherosclerosis in mice.
RATIONALE The E3 ubiquitin ligase inducible degrader of the low-density lipoprotein receptor (IDOL) triggers lysosomal degradation of the low-density lipoprotein receptor. The tissue-specific effects of the IDOL pathway on plasma cholesterol and atherosclerosis have not been examined. OBJECTIVE Given that the liver is the primary determinant of plasma cholesterol levels, we sought to examine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in lipidology
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2012